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The thermopower in a two-dimensional semimetal existing in HgTe quantum wells 18–21 nm thick has been
studied experimentally and theoretically for the first time. It has been found theoretically and experimentally
that the thermopower has two components—diffusion and phonon-drag—and that the second component is
several times larger than the first. It has been concluded that the electron–hole scattering plays an important
role in both mechanisms of the thermopower.
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A two-dimensional semimetal appearing in HgTe
quantum wells 18–21 nm thick [1, 2] currently attracts
permanent interest because it is a two-component
electron–hole system with a number of unusual prop-
erties [3–12] caused by the coexistence of electrons
and holes. One of these properties is electron–hole
scattering through the Landau mechanism, which is
responsible for a strong temperature dependence of
the resistance of a two-dimensional semimetal, in
contrast to a single-component system. It is obviously
important to comprehensively study kinetic effects in
this system.

In this work, we report the first experimental study
of the thermopower of a two-dimensional semimetal.
The comparison of the experiment with the theoreti-
cally predicted diffusion contribution to the thermo-
power in the presence of electron–hole scattering
shows that this contribution underestimates the ther-
mopower. Consequently, it is necessary to take into
account another possible contribution to the thermo-
power from phonon drag of electrons and holes.

We studied -mm rectangular samples whose
middle parts contain Hall bars with 
50-μm and -μm segments based on wide
HgTe quantum wells 20 nm thick with the (013) orien-
tation. The thermopower was measured as follows. A
heater in the form of a thin metallic strip with the
resistance  Ω was placed on one side of a sample
against one of the electric contacts (see the inset of
Fig. 1b). The opposite end of the sample through a

deposited indium layer was in thermal contact with a
5-mm3 copper thermal anchor, which was in turn in
contact with a massive copper holder of the sample. To
create a temperature gradient along the sample, an
alternating current with a frequency of 0.4–1 Hz and a
magnitude of no more than 60 mA was passed through
the metallic strip (heater). The heater operated in a
linear regime in the indicated current range. The tem-
perature gradient appearing along the sample was con-
trolled using two calibrated thermistors placed on the
sides of the heater and thermal anchor. In particular,
the temperature difference thus determined between
contacts spaced from each other by a distance of
100 μm was  K at  K and 
6 V. The thermal conductivity of liquid helium in the
working temperature range (  K) was negligi-
bly low as compared to the phonon thermal conduc-
tivity of the substrate. Under these conditions, the
thermal conductivity of the substrate determines the
temperature gradient along the sample. The thermo-
power signal was measured at the double frequency
with the use of all potentiometric contacts. We studied
about ten samples.

We begin the description of the experiment with
the analysis of the transport response of the studied
samples. Figure 1а shows typical dependences of the
resistance on the gate voltage at different tempera-
tures. It is seen that these dependences correspond to
the behavior expected for 20-nm HgTe quantum wells
where a (two-dimensional metal–two-dimensional
semimetal) transition occurs at the variation of the
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Fig. 1. (Color online) (a) Resistance of the structure versus
the gate voltage at various temperatures in the range of

 K. (b) Temperature dependence of the resis-
tance of the sample at  V. Here and below,

 V is the charge neutrality point. The inset
shows the structure under study and the direction of the
temperature gradient created by the heater (on the right)
and heat sink (on the left).
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Fig. 2. (Color online) (a) Thermopower versus the gate
voltage for various heater powers at the temperature

 K. The inset shows the thermopower versus the
heater power at  V. (b) Seebeck coefficient versus
the gate voltage at various temperatures.
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gate voltage [2, 13]. This transition is accompanied by
a sharp change in the temperature dependence of the
resistance: this dependence is very weak before the
transition and represents a typical temperature depen-
dence of a two-dimensional metal at  (  and l
are the wave vector and mean free path of the electron)
and low temperatures when the phonon Seebeck coef-
ficient is almost absent and the temperature depen-
dence is determined by weak-localization effects,
whereas a noticeable increase in the resistance with
the temperature is observed after the transition to the
semimetal state, which is due to electron–hole scat-
tering and is thereby proportional to the temperature
squared (Fig. 1b).

Figure 2a shows the gate voltage dependences of
the temperature-gradient-induced potential differ-
ence  between the potentiometric contacts of the
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bar with the length  μm. The inset of this fig-
ure shows the dependence of the thermopower signal
on the power applied to the heater. It is clearly seen
that the measured signal is proportional to this power,
which indirectly indicates that the measured signal is
indeed due to the thermopower rather than possible
pickups. We now qualitatively analyze the behavior of
the thermopower shown in Fig. 2a. We begin with the
dependence on the gate voltage. At gate voltages cor-
responding to the electron metal, the thermopower is
relatively low and decreases with an increase in the
density according to the Mott formula for the thermo-
power of metals. The thermopower changes sign near
the transition point and begins to increase almost lin-
early with the development of the semimetal state
(with an increase in the density of holes). Figure 2b
shows the gate voltage dependences of the Seebeck
coefficient  (  is the temperature differ-
ence between potential contacts on which the  sig-
nal is measured) at different temperatures. It is seen
that the Seebeck coefficient increases with the tem-
perature of the sample.
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To more accurately describe the experimental
results obtained in this work, we developed a theory of
the diffusion component of the thermopower for a
two-dimensional electron–hole system consisting of
two types of degenerate particles, electrons and holes.
In the presence of the temperature gradient, chemical
potential, and electron–hole friction, the average
velocities in the subsystems satisfy the equation

(1)

Here, the subscript  specifies quantities
referring to electrons (e) and holes (h);  ( ) is the
density of electrons (holes);  is the number of valleys
( , ); ,  and  are the average veloc-
ity, effective mass, and charge of particles of type ν
( , e is the charge of the hole), respectively; 
is the relaxation transport time on impurities; η is the
friction coefficient; and T is the temperature in energy
units. The friction coefficient  is determined
by electron–hole scattering through the Landau
mechanism. Equation (1) is a generalization of equa-
tions presented in [10, 11] to the case of the existence
of a temperature gradient.

From the condition that the total current density
 vanishes, the Seebeck coefficient

is obtained in the form

(2)

It is noteworthy that the contribution to the current
from any type of charge carriers in Eq. (2) is nonzero
even at zero carrier density; i.e., this formula does not
have any monopolar limit:

(3)

In contrast to Eq. (2), Eq. (3) does not include
terms corresponding to the second type of carriers, in
particular, its relaxation time and friction. The reason
for this between formulas (2) and (3) are different
because they are obtained under the assumption that
Fermi gases are degenerate. Indeed, the transition to
the monopolar case at low temperatures occurs in a
relatively narrow range of the chemical potential

. The friction between different types of carri-
ers distorts the linear temperature dependence of S. In
the low-temperature limit, , which leads to
third-order temperature corrections to the linear
dependence.

The friction can become a prevailing mechanism of
scattering ( ) at higher temperatures. In this
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case, Eq. (2) becomes independent of all relaxation
constants:

(4)

This formula is valid far from the charge neutrality
point (CNP). The Seebeck coefficient S changes sign
near this point (more precisely, at the point where the
numerator of Eq. (2) changes sign). The Seebeck coef-
ficient in the region of applicability of Eq. (4) also has
a linear temperature dependence similar to that at low
temperatures but with a larger slope. As a result, the
dependence can be close to a quadratic law in the
intermediate temperature range.

Figure 3a shows the Seebeck coefficients  cal-
culated by Eqs. (2) and (3) in comparison with exper-
imental data. All parameters necessary for the calcula-
tion by Eqs. (2) and (3) (mobilities and densities of
electrons and holes and the friction coefficient) and
their dependence on the gate voltage were obtained
previously from transport measurements [11] and from
the cyclotron resonance (effective masses of electrons
and holes) [14]. The temperature gradient necessary
for the determination of the Seebeck coefficient was
measured experimentally according to the method
described at the beginning of this paper. Thus, the
comparison of the theory and experiment in Fig. 3a is
free of fitting parameters.

The qualitative behavior of the Seebeck coefficient
to the right of the charge neutrality point, where the
electron metal exists, corresponds to the Mott theory
for metals, which predicts a decrease in the Seebeck
coefficient with an increase in the carrier density. For
comparison with experimental data in this range of
gate voltages, we used the monopolar formula (3) for
electrons, which is the Mott formula under the
assumption that  (τ is the pulse relaxation
time and ε is the energy). As is seen, the Seebeck coef-
ficients calculated by Eq. (3) are in satisfactory agree-
ment with experimental points (Fig. 3а).

On the contrary, to the left of the charge neutrality
point in Fig. 3a, i.e., in the region of gate voltages cor-
responding to the formation of the two-dimensional
semimetal, agreement between the experiment and
theory (Eq. (2)) is much worse. In this range of gate
voltages, the theory gives Seebeck coefficients about
one-fourth of experimental values (see Fig. 3a). This
discrepancy apparently appears because Eq. (2)
describes only the diffusion contribution to the ther-
mopower of the semimetal. However, the measured
thermopower can include not only the diffusion con-
tribution but also the phonon drag contribution [15],
which is disregarded in our theory. As is known, the
phonon drag is proportional to the mass squared of
charge carriers. The masses of electrons and holes in
the 20-nm HgTe quantum well are  and

, respectively. For this reason, the phonon
drag contribution on the left of the charge neutrality
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Fig. 3. (Color online) (a) Seebeck coefficient versus the
gate voltage at the temperatures , 3.1, and 4.2 K
according to (lines) experiments and (points) calculations
by Eqs. (2) and (3) to the left and right of the charge neu-
trality point, respectively, with the parameters obtained
from transport measurements. (b) Temperature depen-
dence of the Seebeck coefficient in the two-dimensional
semimetal: (points) experiment for  V; (lower red
line) diffusion contribution that corresponds to the indi-
cated gate voltage and is calculated by Eq. (2); and (upper
green line passing through experimental points) sum the
diffusion contribution shown by the lower red line and the

function  (  μV/K4), which represents the
assumed phonon drag contribution. 
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point (i.e., in the region where holes dominate) is sig-
nificant, whereas this contribution on the right of the
charge neutrality point, where the two-dimensional
metal exists, is negligible.

Figure 3b shows the experimental points for the
temperature dependence of the Seebeck coefficient at

 V. It is seen that the experimental data are sig-
nificantly higher than the corresponding diffusion
contribution calculated by Eq. (2) shown by the lower
red line in Fig. 3b. It can be assumed that the differ-
ence between the shown experimental and calculated
dependences corresponds to the contribution to the

= −g 5V
Seebeck coefficient from phonon drag in the two-
dimensional semimetal under the condition of domi-
nance of holes. As an example of phonon drag in an
ordinary two-dimensional metal, we consider the
contribution  [15]. Through the experimental
points in Fig. 3b, we plot the upper green line repre-
senting the sum of the diffusion contribution and the
function  (  μV/K4). It is seen that this
line reproduces well the experimental data in the range
of 2.5–3.5 K, but a discrepancy is observed at higher
temperatures, where the experimental points are
below the calculated curve. This discrepancy can be
attributed to the scattering of phonon-dragged holes
by electrons, which is enhanced with increasing tem-
perature, reducing the measured Seebeck coefficient.
However, for a more definite conclusion, it is neces-
sary to develop a theory of phonon drag in the two-
dimensional semimetal in the presence of electron–
hole scattering.

To summarize, experimental information on the
behavior of the thermopower in a two-dimensional
semimetal has been obtained for the first time. A the-
ory of the diffusion component of the thermopower in
the two-dimensional semimetal in the presence of
electron–hole scattering has been developed. This
theory underestimates the experimentally observed
Seebeck coefficients. This discrepancy indicates the
necessity of the inclusion of the electron–phonon
drag in the two-dimensional semimetal in the pres-
ence of the electron–hole scattering.
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